Diposting pada Agustus 17, 2022 Tentukan parabola yang terbuka ke atas dan ke bawah Jawaban Jembatan A terbuka ke bawah dan jembatan bawah B terbuka ke atas 175 total views, 1 views today Posting terkait
Kemudianhubungkan titik-titik itu dengan kurva yang mulus dengan memperhatikan apakah parabola itu terbuka ke atas atau ke bawah. Untuk lebih memahami tentang cara menggambarkan grafik fungsi kuadrat, perhatikan contoh soal yang terdapat dalam artikel tentang 3 langkah mudah menggambar grafik fungsi kuadrat .
Grafik persamaan kuadrat dapat disebut sebagai parabola. Pada irisan kerucut, parabola adalah persamaan kurva, di mana sebuah titik pada kurva memiliki jarak yang sama dari garis tetap dan titik tetap pada bidang. Garis tetap dikenal sebagai direktriks parabola, dan titik tetapnya dikenal sebagai fokus parabola. Dengan kata sederhana, parabola disebut sebagai tempat kedudukan suatu titik yang berjarak sama dari garis tetap directrix dan titik tetap fokus. Sumbu parabola melewati fokus dan tegak lurus terhadap direktriks parabola. Titik potong parabola dengan sumbu disebut titik puncak parabola. Persamaan parabola Persamaan umum parabola adalah, y = 4ax – h 2 + k atau x = 4ay – k 2 + h Di mana h, k adalah titik puncak parabola. Beberapa istilah penting dan bagian parabola Fokus Fokus adalah titik tetap parabola. Direktriks Direktriks parabola adalah garis yang tegak lurus terhadap sumbu parabola. Akord Fokus Akord yang melewati fokus parabola, memotong parabola pada dua titik berbeda, disebut akord fokus. Jarak Fokus Jarak fokus adalah jarak titik x 1 , y 1 pada parabola dari fokus. Latus Rektum Rektum latus adalah akord fokus yang melewati fokus parabola dan tegak lurus terhadap sumbu parabola. Panjang latus rectum adalah LL’ = 4a. Eksentrisitas Rasio jarak suatu titik dari fokus ke jaraknya dari direktriks disebut eksentrisitas e. Untuk parabola, eksentrisitas sama dengan 1, yaitu e = 1. Parabola memiliki empat persamaan standar berdasarkan orientasi parabola dan sumbunya. Setiap parabola memiliki sumbu transversal dan sumbu terkonjugasi yang berbeda. Persamaan Parabola Parabola Rumus parameter parabola y 2 = 4ax Puncak = 0,0 Fokus = a, 0 Parabola terbuka ke sisi kanan. Persamaan sumbu adalah y = 0 Persamaan direktriksnya adalah x + a = 0 Panjang latus rektum = 4a y 2 = -4ax Puncak = 0,0 Fokus = -a, 0 Parabola terbuka ke sisi kiri. Persamaan sumbu adalah y = 0 Persamaan direktriksnya adalah x – a = 0 Panjang latus rektum = 4a x 2 = 4ay Puncak = 0,0 Fokus = 0, a Parabola terbuka ke atas. Persamaan sumbu adalah x = 0 Persamaan direktriksnya adalah y + a = 0 Panjang latus rektum = 4a x 2 = -4ay Puncak = 0,0 Fokus = 0, -a Parabola terbuka ke bawah. Persamaan sumbu adalah x = 0 Persamaan direktriksnya adalah y – a = 0 Panjang latus rektum = 4a Berikut ini adalah pengamatan yang dilakukan dari bentuk standar persamaan parabola Parabola simetris dengan porosnya. Misalnya, y 2 = 4ax simetris dengan sumbu x, sedangkan x 2 = 4ay simetris terhadap sumbu y. Jika parabola simetris terhadap sumbu x, parabola terbuka ke kanan jika koefisien x positif dan ke kiri jika koefisien x negatif. Jika parabola simetris terhadap sumbu y, maka parabola terbuka ke atas jika koefisien y positif dan ke bawah jika koefisien y negatif. Berikut ini adalah persamaan standar parabola ketika sumbu simetri sejajar dengan sumbu x atau sumbu y dan titik sudutnya tidak berada di titik asal. Persamaan Parabola Parabola Rumus parameter parabola y – k 2 = 4ax – h Puncak = h, k Fokus = h + a, k Parabola terbuka ke sisi kanan. Persamaan sumbu adalah y = k Persamaan direktriksnya adalah x = h – a Panjang latus rektum = 4a y – k 2 = -4ax – h Puncak = h, k Fokus = h – a, k Parabola terbuka ke sisi kiri. Persamaan sumbu adalah y = k Persamaan direktriksnya adalah x = h + a Panjang latus rektum = 4a x – h 2 = 4ay – k Puncak = h, k Fokus = h, k + a Parabola terbuka ke atas. Persamaan sumbu adalah x = h Persamaan direktriksnya adalah y = k – a Panjang latus rektum = 4a x – h 2 = -4ay – k Puncak = h, k Fokus = h, k – a Parabola terbuka ke bawah. Persamaan sumbu adalah x = h Persamaan direktriksnya adalah y = k + a Panjang latus rektum = 4a Penurunan persamaan parabola Misalkan P adalah titik pada parabola yang koordinatnya adalah x, y. Dari definisi parabola, jarak titik P ke titik fokus F sama dengan jarak titik yang sama P ke direktriks parabola. Sekarang, mari kita perhatikan titik X pada direktriks, yang koordinatnya adalah -a, y. Dari definisi eksentrisitas parabola, kita dapatkan e = PF/PX = 1 ⇒ PF = PX Koordinat fokusnya adalah a, 0. Sekarang, dengan menggunakan rumus jarak koordinat, kita dapat mencari jarak titik P x, y ke fokus F a, 0. PF = √[x – a 2 + y – 0 2 ] ⇒ PF = √[x – a 2 + y 2 ] —————— 1 Persamaan direktriksnya adalah x + a = 0. Untuk mencari jarak PX, kita menggunakan rumus jarak tegak lurus. PX = x + a/√[1 2 + 0 2 ] ⇒ PX = x +a —————— 2 Kita sudah tahu bahwa PF = PX. Jadi, samakan persamaan 1 dan 2. √[x – a 2 + y 2 ] = x + a Dengan, mengkuadratkan kedua sisi kita dapatkan, ⇒ [x – a 2 + y 2 ] = x + a 2 ⇒ x 2 + a 2 – 2ax + y 2 = x 2 + a 2 + 2ax ⇒ y 2 – 2ax = 2ax ⇒ y 2 = 2ax + 2ax ⇒ y 2 = 4ax Jadi, kami telah menurunkan persamaan parabola. Demikian pula, kita dapat memperoleh persamaan standar dari tiga parabola lainnya. y 2 = -4ax x 2 = 4ay x 2 = -4ay y 2 = 4ax, y 2 = -4ax, x 2 = 4ay, dan x 2 = -4ay adalah persamaan standar parabola. Contoh Soal Soal 1 Tentukan panjang latus rektum, titik fokus, dan titik sudut, jika persamaan parabolanya adalah y 2 = 12x. Penyelesaian Diberikan, Persamaan parabolanya adalah y 2 = 12x Dengan membandingkan persamaan yang diberikan dengan bentuk standar y 2 = 4ax 4a = 12 ⇒ a = 12/4 = 3 Kami tahu itu, Latus rektum parabola = 4a = 4 3 = 12 Sekarang, fokus parabola = a, 0 = 3, 0 Puncak dari parabola yang diberikan = 0, 0 Soal 2 Temukan persamaan parabola yang simetris terhadap sumbu X, dan melalui titik -4, 5. Penyelesaian Diberikan, Parabola simetris terhadap sumbu X dan memiliki titik puncaknya di titik asal. Jadi, persamaan tersebut dapat berbentuk y 2 = 4ax atau y 2 = -4ax, yang tandanya tergantung apakah parabola terbuka ke arah kiri atau kanan. Parabola harus terbuka ke kiri karena melalui -4, 5 yang terletak di kuadran kedua. Jadi, persamaannya menjadi y 2 = -4ax Mengganti -4, 5 dalam persamaan di atas, ⇒ 5 2 = -4a-4 ⇒ 25 = 16a ⇒ a = 25/16 Oleh karena itu, persamaan parabolanya adalah y 2 = -425/16x atau 4y 2 = -25x. Soal 3 Tentukan koordinat fokus, sumbu, persamaan direktriks, dan latus rectum parabola x 2 = 16y. Penyelesaian Diberikan, Persamaan parabolanya adalah x 2 = 16y Dengan membandingkan persamaan yang diberikan dengan bentuk standar x 2 = 4ay, 4a = 16 ⇒ a = 4 Koefisien y positif sehingga parabola terbuka ke atas. Juga, sumbu simetri berada di sepanjang sumbu Y positif. Karena itu, Titik fokus parabola adalah a, 0 = 4, 0. Persamaan direktriksnya adalah y = -a, yaitu y = -4 atau y + 4 = 0. Panjang latus rektum = 4a = 44 = 16. Soal 4 Tentukan panjang latus rektum, titik fokus, dan titik sudut jika persamaan parabolanya adalah 2x-2 2 + 16 = y. Penyelesaian Diberikan, Persamaan parabola adalah 2x-2 2 + 16 = y Dengan membandingkan persamaan yang diberikan dengan persamaan umum parabola y = ax – h 2 + k, kita dapatkan a = 2 h, k = 2, 16 Kami tahu itu, Panjang latus rectum parabola = 4a = 42 = 8 Sekarang, fokus= a, 0 = 2, 0 Sekarang, Titik Puncak = 2, 16. Soal 5 Persamaan parabola adalah x 2 – 12x + 4y – 24 = 0, kemudian tentukan titik sudut, fokus, dan direktriksnya. Penyelesaian Diberikan, Persamaan parabolanya adalah x 2 – 12x + 4y – 24 = 0 ⇒ x 2 – 12x + 36 – 36 + 4y – 24 = 0 ⇒ x – 6 2 + 4y – 60 = 0 ⇒ x – 6 2 = -4y + 15 Persamaan yang diperoleh berbentuk x – h 2 = -4ay – k -4a = -4 ⇒ a = 1 Jadi, titik puncak = h, k = 6, – 15 Fokus = h, k – a = 6, -15-1 = 6, -16 Persamaan direktriksnya adalah y = k + a ⇒ y = -15 + 1 ⇒ y = -14 ⇒ y + 14 = 0
V5Ua6in. 485 100 344 112 401 18 174 42 214